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Two supercavitating hydrofoils near a free surface 

By T. GREEN? AND R. L. STREET 
Stanford University 

(Received 9 September 1965 and in revised form 7 November 1966) 

A two-dimensional, incompressible, irrotational, linearized flow model is em- 
ployed in this analysis of two supercavitating, flat-plate hydrofoils in the 
presence of a free surface. The cavities are taken to have finite lengths, and 
gravity is neglected. The ensuing boundary-value problem is converted, by means 
of conformal mapping, to a mixed-boundary-value problem for the complex 
velocity in the upper half-plane. This altered problem is solved by use of the 
methods of thin-aerofoil theory and the solution involves digital-computer 
evaluation of a large number of incomplete elliptic integrals of the first and third 
kinds. Typical results are presented in graphs, and the results of the present work 
are compared with Yim’s (1964) theory for a single supercavitating body near 
a free surface. 

1. Introduction 
The past decade has witnessed many advances in the analytical treatment of 

cavity flows occurring with the use of high-speed underwater vehicles (Tulin 
1964). In  large part, the problems considered have been restricted to variously 
shaped single bodies that are a great distance from any free surface other than 
the cavity streamlines. It is common knowledge, however, that many practical 
cavitation problems include two cavitating bodies that operate in close proximity 
to a free surface. As an example, any high-speed hydrofoil vessel has at  least two 
supporting foils that may be in a supercavitating state. 

Free-surface effects on single supercavitating hydrofoils have been treated by 
a limited number of authors, and these works have culminated in Yim’s (1964) 
linearized treatment of a flat-plate hydrofoil with a finite cavity that is near the 
water surface. The only work dealing with two hydrofoils was presented by Hsieh 
(1964)) who analysed two foils with infinitely long cavities near the water surface. 

The present analysis may be regarded as the logical continuation of both of the 
above-mentioned contributions. Two flat-plate hydrofoils were placed near a free 
surface, and the cavities were taken to be finite in length (i.e. the cavitation 
number was non-zero). Tulin’s linearized double-spiral-vortex model was used 
(Tulin 1964). Figure 1 depicts the physical plane for this model in the case under 
consideration. Each cavity is assumed to close on a pair of small double-spiral 
vortices. They lead, in turn, to a thin wake (open at infinity), on the boundary of 
which the flow speed and pressure are constant. The wake and the vortices are 
suggestive of the highly turbulent and dissipative flow present in a real flow. The 
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vortices actually arise mathematically from the jump in the flow speed between 
the cavity surface and the wake. Upon linearization, this model provides known 
conditions on the complex velocity in the regions of the trailing wakes (as well as 
on the other pertinent boundaries), and gives the sharp pressure increase that is 
known to accompany cavity-wake transitions. The analytical work is quite 
straightforward, but the final solution must be carried out on a high-speed digital 
computer. 

2. Problem formulation and solution 
Two unit-length flat-plate hydrofoils are inclined at angles of attack y1 and y, 

to the oncoming free stream (figures 1 and 2). The origin of the Cartesian 
co-ordinate frame is fixed at the leading edge of the upper foil, which is a vertical 
distance HI from the undisturbed free surface. The lower foil is a distance H, below 
the upper. Either of the two foils may be upstream of the other, depending on the 

Water surface 

FIGURE 1. Two supercavitating hydrofoils near a free surface. 

FIGURE 2. The linearized flat-plate problem. 



Two supercavitating hydrofoils near a free surface 3 

sign of the tip-to-tip distance L. The upper and lower body-cavity systems are of 
lengths L, and L, - L,  respectively. 

The two-dimensional fluid-velocity vector q is normalized on U ,  the uniform 
velocity at infinity, so that q = U( 1 + u, v). Thus, u and v are the horizontal and 
vertical perturbation velocities that are superposed on a uniform flow. These 
quantities are assumed to be small: u, v < 1. 

The flow is assumed to be inviscid, incompressible, and irrotational. Under 
these conditions, the complex velocity w(x, y) = u(x, y) - iv(x, y) is known to be 
an analytic function of the complex variable z = x + iy. After gravity effects are 
neglected and second-order terms in u and v are dropped, the Bernoulli equation 
takes the form 

p+pU2u = II, (1) 

where p is the fluid static pressure, p the fluid density, and II the pressure at an 
infinite distance from the plates. The essential dimensionless parameter is the 
cavitation number 

II -Pi 
2 $p-pu2 , 0-. = ~ 

where pi is the pressure in the cavity behind the relevant plate. In  terms of the 
cavitation number, the linearized Bernoulli equation (1) applied to a cavity 
streamline then becomes 

0-$ = 2u,, ( 2 )  

where u, is the horizontal perturbation velocity on the ith-cavity streamlines. 
The usual tangency condition must be met on the undersides of the plates, and 

specified pressures must exist on the free water surface, on the cavity streamlines, 
and in the trailing wakes. The Tulin double-spiral-vortex flow model is used 
(Tulin 1964), so that the pressure in each wake (as well as on the water surface) is 
II. The cavity pressures are independent parameters in the problem and will be 
related through the cavitation numbers to the cavity lengths and the lift 
coeEcients. 

In  accordance with the order of approximation implied in linearized theory, 
the boundary conditions are transferred to the appropriate horizontal line, as 
illustrated in figure 2. When the linearized Bernoulli equation ( 2 )  is employed to 
relate pressures and velocities, these conditions become 

u = 0 on the free water surface and in both wakes, 
u = $gl on the upper-foil-cavity streamlines, 
u = +CT~ on the lower-foil-cavity streamlines, 
v = - y1 on the wetted surface of the upper foil, 
v = - y, on the wetted surface of the lower foil, J w(z) = 0 as z becomes very large. 

The solution for the complex velocity will be found by means of conformal 
mapping. The cavitation numbers are then related to the lift coefficients of the 
plates for various values of the parameters that describe the geometry of the flow. 
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A Schwarz-Christoffel mapping is employed to transform the problem domain 
into the upper half of the [-plane (figure 3). The mapping is given in differential 
form as 

where I?, c,  and d are unknown constants. (4) is integrated to yield 

x/r = <(a - c )  +a(d+ 1) log (</a- 1) - c(c+ 1)  log ( g c  - 1) .  (5) 

Here, the origins of the z- and <-planes are the images of each other, and the point 
( - H,, L)  in the x-plane corresponds to the point ( - 1 , O )  in the 5-plane. The 

FIGURE 3. The linearized flat-plate problem mapped on to the upper half-plane. 

upper cavity end corresponds to the points k, and k;, the lower cavity end to k ,  
and kh, and I, and 1, in the [-plane are the images of the plates’ trailing edges. The 
mapping parameters k,, k;, k,, k;, c,  d and I? are related to H,, H,, L,, L, and L in 
a complicated manner, and these relations must be ascertained numerically. The 
mechanics of this operation are set forth in appendix 1. 

The problem has now been transformed into one of determining a function 
w([), analytic in the upper half-plane, which satisfies the following boundary 
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This is a mixed-boundary-value problem, which can be solved by the method 
discussed by Cheng & Rott (1954). The procedure is to change the problem into 
one in which the imaginary part of some related analytic function is known at 
all points on the real axis. A function H ( 5 )  is introduced such that, with proper 
regard for branches, 

Im{H(C,O+)} = 0, 1, < 5 < - 
--GO < 6 < I,, 

- 1 < < < Z,, 
1, < 6 < 0, 

0 < 6 < 00. 

Re{H(<,O+)} = 0, 

Re{H(<,O+)} = 0, 

Im{H(t,O+)} = 0, 

Re{H(<,O+)} = 0, 
A function meeting these requirements is 

H(5) = i{5(5- 4) (6+ 1) (5- 4)F. 
The boundary conditions for the quotient w(C)/H(C) are 

In the language of thin-aerofoil theory, this is now a direct thickness problem for 
the analytic function w(c)/H(C), which may be solved by properly distributing 
sources on the real axis: 

or 

Any function that is purely real on the [-axis may be added to this particular 
solution, Because of the Kutta condition of smooth trailing-edge separation 
(Tulin 1953), singularities in w(c) are excluded save a t  the points corresponding 
to the leading edges of the foils and the cavity ends. For the linearized double- 
spiral-vortex model, the jump discontinuities in u at  the cavity end necessitate 
logarithmic singularities in w(z) at  these points. These singularities are unaffected 
by the mapping. A consideration of the velocity vector in the region of the foil 
leading edges in the physical plane indicates that 2-2 singularities in w(z)  are 
required at the leading edges (Tulin 1964). These singularities are of the type C-4 
in the mapped plane. 
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The solution-( 1 1)-already includes the desired cavity-end singularities. 
The correct leading-edge singularities are obtained by adding homogeneous 
terms of the type (6- a)-l to (1 1) : 

Q1 and Q2 are unknown constants that will be part of the full solution. Any other 
singular terms would change the model and hence are not allowed. Their exclusion 
can also be defended on the basis of the principle of minimum singularity (Van 
Dyke 1964). Then too, higher-order leading-edge singularities would result in 
non-integrable pressure distributions on the foils. 

Homogeneous solutions to the transformed problem which are analytic on the 
x-axis may also be added to (12). Since these solutions must be regular in the 
upper half-plane, any sum of them can be represented as a single Taylor series 

C B, 5". Each term of this series can be shown to vanish by a consideration of the 

behaviour of w(6) at  infinity (see below). The solution (12), with two simple poles 
of unknown strength, is unique (Cheng & Rott 1954). 

The perturbation velocity w must equal zero a t  infinity in the z-plane. The 
corresponding points in the <-plane are at y = c, < = d,  and g = 00. For large 6, 
H ( < )  and the denominators of the separate integrals in (12) are expanded in 
powers of Q and the integrals are treated term by term. The details are presented 
in appendix 2 .  The resulting expansion for w(<) is 

m 

0 

where -iH(<) = C2+h1<+ .... 

equations 
Setting the < and constant terms of this expansion equal to zero yields the 
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Equations (14) and (15) guarantee that w(5) behaves as 1/5 for large g. At 5 = c, 
the condition that w(5) vanish is expressed as 

Similarly, at  = d,  

(14)-(17) are solved numerically for the unknowns c1, cr2, Q1 and Q2. It is 
convenient that all the coefficients in these four equations are expressible in 
terms of elliptic integrals, as illustrated in appendix 3. The inverse nature of 
this method should be noted, as it results in a large increase in computer time 
when certain calculations are performed. This is particularly true when both 
cavitation numbers are kept constant and the depth of one or both foils is varied. 
The basic results provided herein serve to aid the user in his selection of variables 
and thus to reduce the computation effort required for further work. 

The non-dimensional lift and drag coefficients are, respectively, 

and 

where Li and Di are the lift and drag on body i. To the order of approximation 
implied in the linearization, Li equals the normal pressure force on the body and 
D, is that force multiplied by the angle of attack. Thus, for a flat-plate hydrofoil, 

Di = yi Li. 

The normal force Ni is given by the pressure integral over the body 

4 = 1. {p(x,  !/b - ) -p(x ,  !/b + 

The lift coefficients are then 

and 

Using the definition of the cavitation number, these expressions can be shown 
to be equivalent to 

(18a) 

and 
Lt 1 - iHt  

%(X, - H, - ) ax. s L - i H z  
c,, = r , - 2  
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With some obvious substitutions, these expressions become 

x ( +a,Kl - y 2  K 2  - &g2K3 - 4g1K4 + y1 K5 + +gl K6 - Q1 K7 - Q2 K8), (21) 
and 

x ($r2J1 - y 2 J 2 -  &,J3 - $cr,J4+y1J5+ $u1J6- Q,J7 -Q258).  (22) 
The inner integrals of K5 and J2 must be treated as Cauchy principal-value 
integrals. As with the equations that determine the cavitation-number cavity- 
length relationships, it is convenient for the numerical work that the inner 
integrals in (2 1) and ( 2 2 )  can be expressed in terms of elliptic integrals. The calcu- 
lation of C,, and CL2 is discussed further in appendix 4. 

It should be noted that body shapes other than flat plates can be handled with 
little additional effort. For example, any shape that can be expressed as a 
rational function of the physical horizontal-distance variable x will allow a similar 
treatment, as the coefficients of r1, g2, Q1 and Q2 in (14), (15), ( l6) ,  and (17), and 
the inner integrals in (21) and (22), can still be expressed in terms of elliptic 
integrals. Also, no further singularities (see appendix 4) are introduced in any of 
the integrands in (21) and (22). 

3. Results and conclusions 
In  view of the wealth of variable physical parameters y,, ya, H,, H2, L, a,, g2,  

a wide variety of situations can be studied. It seems reasonable to confine atten- 
tion to three quite different practical configurations that illustrate the more 
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important physical effects. The effects that are expected to parallel those investi- 
gated by Yim (1964) will not be considered. Thus, the angles of attack are held 
constant, and the total system of the two hydrofoils is not moved vertically in 
relation to the free surface, In  this spirit, the representative cases shown in 
figure 4 will be investigated. 

Water surface 

Water surface 

U - 

FIGURE 4. Two-foil representative cases. (a )  Case I, shallow stacked foils; ( b )  case 11, 
shallow staggered foils, shown with positive stagger; (c) case 111, deeply submerged 
staggered foils, shown with negative stagger. 

Case I .  Xhallow stacked foils 

The two foils are aligned vertically and are rather close to the free water surface. 
On a hydrofoil vessel, this would correspond to having the two foils supported 
by the same strut system. The fixed physical parameters are y1 = y, = 5", 
Hl = 2.0, H, = 1.0, L = 0. The effect of cavitation-number variation on lift 
coefficients and cavity lengths is studied. 

Figure 5 shows the effect on the two cavity lengths of changing the upper 
cavitation number. The lower cavitation number is held constant. Figure 6 is the 
counterpart of figure 5 when the lower cavitation number is varied. In  figure 7, 
the cavity lengths are shown as functions of equal, changing cavitation numbers. 
In each plot, the dotted lines depict the result calculated by ignoring the other 
foil and using the single-foil theory due to Yim (1964). 

In  general, the lower-cavity length is decreased by the presence of the upper 
foil. Mathematically, this result stems from the vertical-perturbation-velocity 
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boundary condition on the lower side of the upper foil. Physically, the downwash 
from the upper foil tends to decrease the effective angle of attack of the lower foil 
and hence decreases the cavity length. (In the linearized theory of supercavitating 
hydrofoils, the cavity length is linearly proportional to the angle of attack,) 

0 1 2 3 

Reduced upper cavitation number, al/y 

FIGURE 5. Shallow-stacked-foil case : foil-cavity lengths against reduced upper cavitation 
number, for constant lower cavitation number us = 0-082. The inset, showing the con- 
figuration, is drawn to scale. -, present analysis; ---, Yim (1964). 

On the other hand, the upper cavity length is always increased as a result of 
interaction effects. Now the positive vertical perturbation velocity associated 
with the front part of the lower cavity increases the effective angle of attack of 
the upper foil. 

In  figures 5 and 6, the lengths of the cavities in which the pressure is held 
constant are seen to increase or decrease with an increase of the other, variable, 
cavitation number, depending upon the magnitude of that cavitation number. 
This result probably stems from the mutual approach and subsequent recession 
of the two turbulent mixing regions associated with the ends of the cavities. 

Figures 8-10 show the separate and total lift coefficients of the system in the 
same three situations as above. Again, the dotted lines represent results calcu- 
lated after Yim (1964). In  general, the lift on the upper foil is decreased because 
of the nearness of the low-pressure region around the lower cavity; the lift on the 
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foil 

11 

I I 

1 2 
Reduced lower cavitation number, u2/y 

FIGURE 6. Shallow-stacked-foil case : foil-cavity lengths against reduced lower cavitation 
number, for constant upper cavitation number cl = 0.082. -, present analysis; ---, Yim 
(1964). 

10 

9 

8 

7 

rc, 
3 6  

.d 3 5  
0 
v 4  

3 

2 
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0 

- 
d 

'1 2 
Reduced cavitation number, u/y 

I 

FIGURE 7. Shallow-stacked-foil case : foil-cavity lengths against reduced cavitation number, 
for equal cavitation numbers. -, present analysis; ---, Yim (1964). 
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I I I I 

Reduced lower cavitation number, uz/y 
0-5 1 -0 1.5 2.0 

FIGURE 9. Shallow-stacked-foil case : reduced lift coefficients against reduced lower cavita- 
tion number, for constant upper cavitation number u1 = 0.082. -, present analysis; 
--_ , Yim (1964) with uncoupled foils. 
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lower foil is seen to increase because of the increase in pressure resulting from the 
general decrease in flow velocity brought about by the addition of a second 
stagnation point in the flow on the upstream foil. This effect overcomes the effect 
of the downwash from the upper foil, which decreases the effective angle of attack 
of the lower foil and hence tends to decrease the lift. 

I I I I 

0 5  1 -0 1 *5 2.0 
1.0 ' 

Reduced cavitation number, u/y 

FIGURE 10. Shallow-stacked-foil case : reduced lift coefficients against reduced cavitation 
number, for equal cavitation numbers. -, present analysis; ---, Yim (1964) with 
uncoupled foils. 

The opposite interaction effects on the separate foils usually produce a slight 
decrease in total system lift, but obviously the total system moments are changed 
more noticeably. Hsieh (1964), in an analysis of a similar situation involving 
infinite cavities, finds the same behaviour of the lift coefficients in a comparable 
situation where, in the present nomenclature, L = 0,  HI = 1.0, and H, = 0.5. 

For completeness, the foil leading-edge-singularity strengths have been plotted 
for the situation in which both cavitation numbers were varied (figure 11). Here, 
the dotted line shows the leading-edge singularity strength of a single, flat-plate, 
supercavitating hydrofoil in an infinite fluid. The free-surface and foil-interaction 
effects result in an increase of the singularity strengths. 

Case I I .  Shallow staggered foils 
The two foils are closer to the water surface than in case I and are quite far apart 
horizontally. This arrangement simulates a typical hydrofoil-boat configuration 
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in which the foils are supported by independent fore-and-aft strut systems. Here, 
the fixed physical parameters are y1 = yz = 5", Hl = 1.0, L = 4.5. Again, the 
effect of cavitation-number variation is considered. Also, the depth of the down- 
stream foil is varied, and the corresponding lift coefficients and cavity lengths 
are calculated for fixed cavitation numbers. 

0.40 

0.35 - 
81 - 

d 
2 al 

0.30 
h 

42 .* 
3 z 
F: 
.3 

0.25 

020 

( 0.5 1 *o 1.5 2.0 
Reduced cavitation number, u/y 

FIGURE 11. Shallow-stacked-foil case : nose-singularity strengths against reduced cavitation 
number, for equal cavitation numbers. -, present analysis; ---, result for one flat plate 
in an infinite fluid. 

In  this configuration the downstream foil is operating near the wake generated 
by the upstream foil, and not near the upstream foil itself. In  the linearized 
double-spiral-vortex model, the boundary condition enforced in the wakes is the 
same as that on the water surface. Thus, the behaviour of the downstream foil is 
expected to approximate that of a single foil near a free surface. 

Figures 12 and 13 show the effect on cavity lengths of varying one cavitation 
number while holding the other cavitation number constant. Here again, the 
lower, downstream cavity is shortened and the upper, upstream cavity is 
lengthened in comparison with single-body results after Yim (1964). The physical 
explanation for the lengthening of the upstream cavity follows that offered in 
case I. As for the shortening of the lower cavity, the decrease in effective angle of 
attack of the lower foil is now due to the warping of the upstream cavity and 
wake in conjunction with the lift exerted on the upper foil (Tulin 1964). Both 
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cavities are significantly shorter than the plotted result for a single flat-plate 
hydrofoil in an infinite fluid. The length of the upstream cavity is essentially 
independent of changes in the downstream cavitation number, as expected, while 
the downstream-cavity length increases markedly when the turbulent flow associ- 
ated with the end of the upstream cavity passes the leading edge of the down- 
stream foil. Here the upstream cavity is accompanied by a pressure reduction in 
the surrounding fluid. The normal tendency of the fluid pressure to close the 
cavity is then decreased. 

Figure 14 shows the effect on both cavity lengths when the cavitation numbers 
are kept constant and the depth of the downstream foil is varied. Little effect was 
found on the length of the upstream cavity. The downstream cavity experiences 
a considerable shortening as the vertical distance between the foils approaches 
zero. A consideration of Yim’s work shows that this shortening is to be expected 
on the basis of the equivalence of the boundary conditions applied in wakes and 
on free surfaces. The dotted line indicates the result obtained by replacing the 
upper-body-cavity wake by an ‘ equivalent free surface ’ at the same depth, and 
then using single-body results based on Yim. 

Unfortunately, in this case I1 (where the upstream foil is a unit distance from 
the free water surface), accuracy considerations related to the sensitivity of the 
mapping prevented computations for situations in which the downstream foil was 
the upper foil (appendix 1). Otherwise, it is not crucial, in general, whether L is 
positive or negative (see case I11 below) as far as the computations are concerned. 

Figures 15 and 16 show that the lifts on the separate foils are always increased 
here, unlike the case involving stacked foils. Hsieh (1964) reports no equivalent 
results with which to compare these findings, although they can easily be 
explained by the fact that the wake acts as a free surface:Figure 16 indicates that 
changing the downstream cavitation number has the expected negligible effect 
on the upstream lift coefficient. Figure 15 shows a substantial change in the 
behaviour of both lift coefficients as the end of the upstream cavity nears and 
passes the downstream foil. The downstream lift is reduced dramatically as a 
result of the low pressure associated with the upstream cavity, while the decrease 
of the upstream lift stemming from the decrease of the corresponding cavitation 
number is allayed. 

Figure 17 indicates that the upstream lift is virtually unchanged by a vertical 
displacement of the downstream foil. The downstream lift rises markedly as that 
foil approaches the wake generated by the upstream foil. Again, the ‘equivalent- 
free-surface’ result is plotted, and shows that in this case calculations of the 
downstream lift can be performed to an accuracy of 5% by the use of such an 
artifice. 

Case I I I .  Deeply submerged staggered foils 

The foils are taken far from the free water surface in order to isolate the effect of 
their mutual proximity. The (normalized) depth of the upstream foil is 100. 
The other fixed physical parameters are y1 = yz = 5”, ILI = 2.0, crl = cr2 = 0.1. 
The downstream-foil depth relative to the fixed upstream foil is varied, and the 
lift coefficients and cavity lengths are calculated. 
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Here the flow regime is quite unlike that in the previous example, because of 
the absence of the free surface and the greater lengths of the cavities. In  par- 
ticular, the end of the upstream cavity now lies downstream of the trailing foil. 
In  figure 18, both cavities are seen to undergo a sharp increase in length as the 
trailing foil passes downward through the upstream cavity. Again, the down- 

FIQTJRE 18. Deep-submergence case : foil-cavity lengths against vertical distance between 
the foils, for constant cavitation numbers v = 0.1. The inset is drawn to scale. 

Upstream foil / r Downstream foil 

J 
-5  - 4  - 3  - 2  -1 0 1 2 3 4 5 

Vertical separation distance, D 

FIGURE 19. Deep-submergence case : reduced lift coefficients against vertical 
between the foils, for constant cavitation numbers u = 0.1. 

distance 

2-2 
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wash from the leading upper foil results in a shortening of the trailing lower 
cavity. Now the downstream-cavity length either increases or decreases as the 
upstream system is approached vertically, according to whether the trailing foil 
is below or above the leading foil. There is little effect on the lower upstream 
cavity as a result of a relative change in vertical position. Fairly large cavity 
interactions are predicted even when large distances separate the two foils. 

I I I I t 

-5 - 4  - 3  - 2  -1 
I I I I I 

1 2 3 4 5  
Vertical separation distance, D 

FIGURE 20. Deep-submergence case : total reduced lift coefficient against vertical 
distance between the foils, for constant cavitation numbers r~ = 0.1. 

In figure 19, the individual lift coefficients also show a strong discontinuity 
across the upstreamcavity. An abrupt increase in both lifts is forecast as the 
trailing foil moves in a downward direction through the upstream cavity. The 
downstream lift coefficient shows the larger jump, because of the high speeds and 
low pressures associated with the upstream cavity. This low pressure is felt on 
the downstream, upper foil, but is masked by the downstream cavity when the 
downstream foil is the lower of the two foils. Of course, the discontinuity is also 
present in the total lift of the system, as shown in figure 20. However, as with the 
stacked foils, the changes (because of interaction effects in the individual lifts) 
tend to compensate each other. 

4. General conclusions 
The trends examined are not expected to resemble closely those reported by 

Hsieh (1964), as the cavities in the present work are areas in which the lowest 
pressure in the flow is achieved (Birkhoff & Zarantonello 1957), whereas, when 
infinite cavities are used, the pressure in the cavities equals the pressure on the 
free surface. 
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When the upstream cavity does not pass the downstream foil, the character- 
istic features of the upstream foil are unaffected by changes in the vertical height 
and cavitation number of the downstream foil. In general, the interaction effects 
on cavity lengths and lift coefficients are quite dependent on the length of the 
upstream cavity. 

The downwash from the upper, leading foil always tends to shorten the lower, 
trailing cavity. On the other hand, the lower trailing foil produces a longer 
upstream cavity. These effects are usually also present when the upstream foil 
is the lower foil. 

When the horizontal distance between the two foils is small, the interaction 
effects on the separate lifts tend to cancel each other so that the total lift calcu- 
lated by using the uncoupled theory is usually accurate to within 6 yo. Whether 
or not this accuracy is acceptable depends on the particular application. 

There is a large discontinuity in individual and total lifts and in cavity lengths 
of the system connected with a motion of the trailing foil through the cavity of 
the leading foil. When fairly low cavitation numbers are involved, the down- 
stream foil should be the lower of the two for larger values of the total lift. 

With the shallow stacked foils, there is a larger change in total lift when the 
upper-cavity pressure is varied than when the lower-cavity pressure is varied. 
Therefore it is more advantageous to control the upper cavitation number than 
the lower to produce desired changes in lift. 

In each situation studied, the interaction effects on the individual-foil moments 
(taken to be positive in a counterclockwise direction) are qualitatively the same 
as the effects on the foil lifts. The actual moment calculations could be performed 
by applying the separate lift forces at  the centres of pressure of the two foils 
(Parkin 1959). These centres are approximately a t  the foil quarter-chord points 
(Parkin 1959). The total moment taken about the leading edge of the upstream 
foil will be increased when the horizontal distance separating the two foils is large 
(case 11) and decreased when this distance is small (case I). 

Again, a sharp change in total moment is predicted when the the trailing foil 
moves vertically through the leading-foil wake. Thus it is expected that a down- 
ward, plunging motion of the bow of a hydrofoil vessel, which results in a reversal 
in the relative vertical positions of the two foils, will be retarded by a concurrent 
decrease in the counterclockwise moment on the system. Figure 21 illustrates 
a plunging vessel. Note that this situation does not exactly duplicate that 
studied using the theory, as now the angles of attack also change. Also, the total 
moment will increase when the motion of the vessel leads to the trailing foil 
passing downward through the upstream cavity. Hence, there is a stabilizing 
effect on each type of motion. Naturally, these conclusions are invalid if the 
motion results in either of the cavities being re-formed on the lower surface of 
the foil. 

It is reasonable to ask how the use of a different linearized model would affect 
the results discussed above. Several non-linear models are shown in figure 22,  
and their linearized counterparts are presented in figure 23. In  the first place, 
some alternative models would present purely mathematical difficulties. For 
instance, the absence of a wake on which conditions are specified in the Tulin 
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closed-cavity model (figure 23) precludes the direct application of the method of 
Cheng & Rott (1954). Secondly, the linearized double-spiral-vortex model that 
has been employed in the analysis has a number of pleasing features. There is 

Water surface 

Water surface 

(b)  

FIGURE 21. Stability of a plunging hydrofoil boat. (a)  Foil geometry before bow plunge; 
( b )  foil geometry after bow plunge. Ma > M,, giving a net restoring moment. 

q = qc const. 4 = 4 c  

4 = 4c  o = o  

q=qo 

q=qo 

- - -___  --- ----- - - - - - -_  

q=9c q=qc e=o  
(4 (4 

FIGURE 22. Models of finite-length cavity flows. (a )  Modified Riabouchinsky model ; 
( b )  re-entrant-jet model; (c) horizontal-plate-termination model (Roshko model) ; (d )  double- 
spiral-vortex model. 

a trailing wake: its width decreases to zero at infinity, and the loss in pressure as 
a result of the turbulent conditions at the cavity end is reproduced. Tulin (1964) 
has given a complete discussion of this model. On the other hand, the linearized 
Roshko model shown in figure 23-which could also be treated by the method of 
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Cheng & R o t t h a s  a ‘wake’ that seems too wide when compared with experi- 
ments, and does not allow the downward warping of the wake which is known 
to accompany lifting forces on the foil. The linearized double-spiral-vortex model 
stands out as the best attempt to date to  represent adequately the flow conditions 
near the limiting boundaries. 

Nevertheless, it remains worth while to discuss the effect of the use of different 
models on lift and cavity results. Of course, a closed-cavity model that does not 
allow a wa,ke will not feature the distinctive stabilizing phenomenon involved in 
plunging (see above). Note that both the re-entrant jet model and the modified 
Riabouchinsky model (figure 22) degenerate to the Tulin closed-cavity model 

u=+l u =  :u 

u =  :. - --m -6 
(4 v=--y U = ; r  ( b )  v = - - ?  

u=  ;u v = o  u =  :. u = o  - - I 
(4 - u = ; u  v = o  c- I [ =  ! a  It = 0 

FIGURE 23. Linearized models of finite-length cavity flows. r = {n-p(cavity)}/l U2. 
(a)  Linearized modified Riabouchinsky model (Tulin closed-cavity model) ; (a) linearized 
re-entrant-jet model; (c) linearized horizontal-plate-termination model (linearized Roshko 
model) ; (d )  linearized double-spiral-vortex model. 

21”: 

after linearization. Also, use of either the Tulin closed-cavity model or the linear- 
ized Roshko model would lead to smaller foil lifts. In these alternative models, 
u decreases monotonically from & on the cavity walls to zero at  infinity, whereas 
u is taken to be zero throughout the wake in the linearized double-spiral-vortex 
model. Since u is a harmonic function, these higher wake-region values in the two 
alternative models would result in an increase of u on the wetted surface of the 
foil, and hence lower the pressure on the wetted surface. 

Yim has reported that the linearized double-spiral-vortex model leads to 
cavity lengths that are in excellent agreement with the experimental results of 
Dawson & Bate (1962). The Tulin model seems consistently to underestimate 
the cavity length, and the Roshko model has no well-defined cavity length. Yim’s 
theory shows fairly good agreement with experimental lift coefficients as well. 
The only experimental work dealing with two cavitating bodies near a free 
surface known to the authors is Wetzel (1965). Unfortunately, it does not invite 
comparison with the present theory because the tested foils had an aspect ratio 
of only 2 (highly three-dimensional flow) and at that the only possibly com- 
parable case has negligible interaction effects. 

This research was carried out a t  Stanford University under the Bureau of 
Ships General Hydromechanics Research Program, and National Science 
Foundation Grant No. NSF-GP 948 provided support for the numerical compu- 
tations. Reproduction in whole or in part is permitted for any purpose of the 
United States Government. 
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Appendix 1. The Schwarz-Christoffel mapping 

T. Green and R. L. Street 

The correspondence between the z- and g-planes is given by the function 

qr = g d  - c )  + d(d + 1) log ( g p  - 1) - c(c + 1) log ( g c  - 1). (A 1.1) 

Here the points a t  infinity and the origins have been made to coincide, and the 
z-point (L, - H,) is mapped into the 9-point ( - 1,O) (see figures 2, 3). 

Derived from (A l.l), the equations that determine the parameters c, d, and 
I? as functions of H,, H,, and L are 

nL - = -(--log;ci)-log H, c - d  l + c  (-d) l + d  , 
H, H, c(c+ 1) 

5 = c(c+ 1). nr 
The equations for 1, and I, in terms of c, d ,  and I? are 

l,(d - c )  + d(d + 1) log (d - I,) 
- C(C+ 1) log (zI - C) = i/r + q d +  1) iogd-c(c+ 1) log lcl 

= i/r +d(d+ 1) log (d+ 1) - c(c+ 1) log (c+ 1) 

and I,(d - c )  + d(d + 1) log (d - 1,) - c(c + 1) log (c- 1,) 

The quantities k,, k;, c, and d are related by 

k i (d -c )+d(d+ l)log(d-k;)-c(c$ l)log(k;-c) 
= k,(d - c )  + d(d + 1) log (d- k,) - c(c + 1) log (k ,  - c). 

L, is determined from the relation 

L,/r = k,(d - C) + d(d + 1) log (1 - k, /d)  - C(C + 1) log (1 - k,/c).  

Similarly, for the second foil, 

k,(d - c) +d(d + 1) log (d - k,) - cfc + 1) log (k, - c) 
= k i ( d -  C) + d(d + 1) log (d - k;) - C(C + 1) log (k; - c), 

and 

(A 1.2) 

(A 1.3) 

(A 1.4) 

(A 1.5) 

(A 1.6) 

(A 1.7) 

(A 1.8) 

(A 1.9) 

~ , / r  = L / r +  (k;+ 1) (d -c )+d(d+ qiog (=) d - k ;  --c(c+ w o g  (=). ki -C 

(A 1.10) 

In the calculations, c ,  d ,  I?, I,, and I, were first determined from the physical 
parameters, and then values of k1 and ki were assumed as the further necessary 
input parameters. These ‘ mapped-cavity-length ’ parameters were used instead 
of the more natural physical-cavity lengths because of the high accuracy neces- 
sary in k, and k;. Thus a typical computation proceeded as follows: 

(i) physical problem -+ H,, H,, L; 
(ii) H,, H,, L+c ,d ,  I?; 
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(iii) c, d ,  I?+ 1,, 1,; 
(iv) k,, k; assumed; 

(vi) equations (14)-( 17) + cr,, cr2, Q,, Q2. 
(v) k17 'L --f lei, le27 L1, L 2 ;  

A typical set of parameter values is presented in table 1. It corresponds to a low- 
cavitation-number computation in the shallow staggered-foil case. The high 
accuracy needed for several of the parameters is to be noted. 

Cavitation numbers 
and 

z-plane <-plane singularity strengths 
H ,  = 1.0 k ,  = - 1.47223008 g1 = 0.1 
H ,  = 1.0 I, = -1.36085206 a, = 0.1 
L, = 1.8297862 kk = -0.92612266 Q1 = -0.23735057 
L, = 5.9145975 c = -0.92579977 &, = 0.30152621 

kl = -0.49548537 
I ,  = -0.31174158 

L = 4.5 

ki = 0.06445444 
d = 0.06453038 

TABLE 1. Representative parameter values 

Appendix 2. Expansion of w(<) for large < 
After analytic continuation by reflexion about the real axis, the complex 

velocity w($ (equation (12)) is regular outside the circle 151 = max ( /k2 j7  hi) ,  and 
therefore has a Laurent expansion in the region outside that circle. 

In  this region, H(C) may be expanded in the form 

-iH(C) = 6 2 + h l ( z 1 7 1 2 ) 5 + h , ( z , 7 z 2 ) $ - " '  ( ] C l  > l z2I )7  (A 2.1) 

where the explicit forms of hl(l17 Z,), . . . , are not important. The pole a t  the leading 
edge of the upper foil is already in the desired form. The other pole may be 

1 1 1  Qz 
Y+ 1 

expressed as 
~ = Qz (5-5"+F- ...) . 

The (7- g)-l term in each integrand in (12) is similarly expanded: 

yielding integrals such as 

(A 2.2) 

(A 2.3) 

The integrand series in (A 2.3) is uniformly convergent in any closed subinterval 
of (kz ,  12) that does not include either Ic, or I,, and can thus be integrated term by 
term to give a series involving convergent improper integrals of the second kind 
(Apostol 1958) : 

(A 2.4) 
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The expansion (A2.2), the upper body pole, and the expansions typified by 
(A 2.4) are multiplied term by term with the expansion (A 2.1) of H ( < ) ,  resulting 
in the (unique) Lament expansion of the complex velocity for large 6, which is 
given in (13). 

Appendix 3. Elliptic integrals 
Each of the coefficients in (14)-( 17) can be expressed as a sum of complete and 

incomplete elliptic integrals (Byrd & Friedman 1954). A typical case is shown 
below. 

2 1 - - a. 1: (7--c) (.(. - 11) (7 + 1)  (7- 12)}+ (I1- I,)+ 1 + c 

x ( l"+l . (P,cx2,k)-F(4,k)] ,  1,-c (A3.1) 

and F(q5, k) and n-(#, a,, k) are the incomplete elliptic integrals of the first and 
third kinds, respectively. 

Appendix 4. Numerical evaluation of the lift coefficients 
The numerical integrations indicated in (2 1) and (22) are straightforward,with 

the exception of the principal values in K5 and J2, and the singular behaviour of 
the inner integrals of J1, J2, J3, K4, K5, and K6. These cases are dealt with 
below. 

( a )  Evaluation of the inner integrals of K5 and J2 

The inner integral of K5 may be written as 

+ +F/'((<) 83 + 0(86), 

where F(5)  = lIP1(c)1; 8 < min{][-lll, t}. This expression may be written 
explicitly as 

+ o( g&%)) , (A4.1) 
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d r  
= 0, (J2) lim G(5) 

(J2) lim G(5) I - l  dr 
I+L+) s1 c, (7 - 8 IWr) I 

[+-I(-) z2 (7 - 5) IW)( = O ,  

27 

where 

Using the same notation, the inner integral of J 2  can be approximated by 

(A 4.2) 

where 
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